Copied to
clipboard

G = C52⋊SD16order 400 = 24·52

The semidirect product of C52 and SD16 acting via SD16/C2=D4

non-abelian, soluble, monomial

Aliases: C52⋊SD16, C2.4D5≀C2, (C5×C10).4D4, C522D4.C2, C525C84C2, C522Q81C2, C526C4.7C22, SmallGroup(400,132)

Series: Derived Chief Lower central Upper central

C1C52C526C4 — C52⋊SD16
C1C52C5×C10C526C4C522D4 — C52⋊SD16
C52C5×C10C526C4 — C52⋊SD16
C1C2

Generators and relations for C52⋊SD16
 G = < a,b,c,d | a5=b5=c8=d2=1, ab=ba, cac-1=a3, dad=b3, cbc-1=b2, dbd=a2, dcd=c3 >

20C2
2C5
2C5
2C5
10C22
10C4
25C4
2C10
2C10
2C10
4D5
20C10
25C8
25Q8
25D4
2D10
2Dic5
10Dic5
10C20
10Dic5
10Dic5
10C2×C10
4C5×D5
25SD16
10Dic10
10C5⋊D4
10C5⋊C8
2D5×C10
2C5×Dic5

Character table of C52⋊SD16

 class 12A2B4A4B5A5B5C5D5E8A8B10A10B10C10D10E10F10G10H10I20A20B20C20D
 size 11202050444485050444482020202020202020
ρ11111111111111111111111111    trivial
ρ211-11111111-1-111111-1-1-1-11111    linear of order 2
ρ311-1-11111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ4111-1111111-1-1111111111-1-1-1-1    linear of order 2
ρ52200-222222002222200000000    orthogonal lifted from D4
ρ62-200022222-2--2-2-2-2-2-200000000    complex lifted from SD16
ρ72-200022222--2-2-2-2-2-2-200000000    complex lifted from SD16
ρ844200-1-5-1+53-5/23+5/2-100-1-5-1+53-5/23+5/2-1-1-5/2-1-5/2-1+5/2-1+5/20000    orthogonal lifted from D5≀C2
ρ944-200-1-5-1+53-5/23+5/2-100-1-5-1+53-5/23+5/2-11+5/21+5/21-5/21-5/20000    orthogonal lifted from D5≀C2
ρ10440-203+5/23-5/2-1-5-1+5-1003+5/23-5/2-1-5-1+5-100001-5/21-5/21+5/21+5/2    orthogonal lifted from D5≀C2
ρ11440203-5/23+5/2-1+5-1-5-1003-5/23+5/2-1+5-1-5-10000-1-5/2-1-5/2-1+5/2-1+5/2    orthogonal lifted from D5≀C2
ρ12440203+5/23-5/2-1-5-1+5-1003+5/23-5/2-1-5-1+5-10000-1+5/2-1+5/2-1-5/2-1-5/2    orthogonal lifted from D5≀C2
ρ13440-203-5/23+5/2-1+5-1-5-1003-5/23+5/2-1+5-1-5-100001+5/21+5/21-5/21-5/2    orthogonal lifted from D5≀C2
ρ1444-200-1+5-1-53+5/23-5/2-100-1+5-1-53+5/23-5/2-11-5/21-5/21+5/21+5/20000    orthogonal lifted from D5≀C2
ρ1544200-1+5-1-53+5/23-5/2-100-1+5-1-53+5/23-5/2-1-1+5/2-1+5/2-1-5/2-1-5/20000    orthogonal lifted from D5≀C2
ρ164-40003-5/23+5/2-1+5-1-5-100-3+5/2-3-5/21-51+510000ζ4ζ534ζ524ζ534ζ52ζ43ζ5443ζ543ζ5443ζ5    symplectic faithful, Schur index 2
ρ174-40003+5/23-5/2-1-5-1+5-100-3-5/2-3+5/21+51-510000ζ43ζ5443ζ543ζ5443ζ54ζ534ζ52ζ4ζ534ζ52    symplectic faithful, Schur index 2
ρ184-40003-5/23+5/2-1+5-1-5-100-3+5/2-3-5/21-51+5100004ζ534ζ52ζ4ζ534ζ5243ζ5443ζ5ζ43ζ5443ζ5    symplectic faithful, Schur index 2
ρ194-40003+5/23-5/2-1-5-1+5-100-3-5/2-3+5/21+51-51000043ζ5443ζ5ζ43ζ5443ζ5ζ4ζ534ζ524ζ534ζ52    symplectic faithful, Schur index 2
ρ204-4000-1+5-1-53+5/23-5/2-1001-51+5-3-5/2-3+5/21545ζ5455352ζ53520000    complex faithful
ρ214-4000-1-5-1+53-5/23+5/2-1001+51-5-3+5/2-3-5/21ζ53525352545ζ5450000    complex faithful
ρ224-4000-1-5-1+53-5/23+5/2-1001+51-5-3+5/2-3-5/215352ζ5352ζ5455450000    complex faithful
ρ234-4000-1+5-1-53+5/23-5/2-1001-51+5-3-5/2-3+5/21ζ545545ζ535253520000    complex faithful
ρ2488000-2-2-2-2300-2-2-2-2300000000    orthogonal lifted from D5≀C2
ρ258-8000-2-2-2-23002222-300000000    symplectic faithful, Schur index 2

Smallest permutation representation of C52⋊SD16
On 40 points
Generators in S40
(1 18 35 29 12)(2 30 19 13 36)(3 14 31 37 20)(4 38 15 21 32)(5 22 39 25 16)(6 26 23 9 40)(7 10 27 33 24)(8 34 11 17 28)
(1 35 12 18 29)(2 13 30 36 19)(3 31 20 14 37)(4 21 38 32 15)(5 39 16 22 25)(6 9 26 40 23)(7 27 24 10 33)(8 17 34 28 11)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 4)(3 7)(6 8)(9 11)(10 14)(13 15)(17 23)(19 21)(20 24)(26 28)(27 31)(30 32)(33 37)(34 40)(36 38)

G:=sub<Sym(40)| (1,18,35,29,12)(2,30,19,13,36)(3,14,31,37,20)(4,38,15,21,32)(5,22,39,25,16)(6,26,23,9,40)(7,10,27,33,24)(8,34,11,17,28), (1,35,12,18,29)(2,13,30,36,19)(3,31,20,14,37)(4,21,38,32,15)(5,39,16,22,25)(6,9,26,40,23)(7,27,24,10,33)(8,17,34,28,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38)>;

G:=Group( (1,18,35,29,12)(2,30,19,13,36)(3,14,31,37,20)(4,38,15,21,32)(5,22,39,25,16)(6,26,23,9,40)(7,10,27,33,24)(8,34,11,17,28), (1,35,12,18,29)(2,13,30,36,19)(3,31,20,14,37)(4,21,38,32,15)(5,39,16,22,25)(6,9,26,40,23)(7,27,24,10,33)(8,17,34,28,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38) );

G=PermutationGroup([[(1,18,35,29,12),(2,30,19,13,36),(3,14,31,37,20),(4,38,15,21,32),(5,22,39,25,16),(6,26,23,9,40),(7,10,27,33,24),(8,34,11,17,28)], [(1,35,12,18,29),(2,13,30,36,19),(3,31,20,14,37),(4,21,38,32,15),(5,39,16,22,25),(6,9,26,40,23),(7,27,24,10,33),(8,17,34,28,11)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,4),(3,7),(6,8),(9,11),(10,14),(13,15),(17,23),(19,21),(20,24),(26,28),(27,31),(30,32),(33,37),(34,40),(36,38)]])

Matrix representation of C52⋊SD16 in GL4(𝔽41) generated by

18000
01600
00370
00010
,
37000
01000
00180
00016
,
0010
00040
04000
40000
,
1000
04000
0001
0010
G:=sub<GL(4,GF(41))| [18,0,0,0,0,16,0,0,0,0,37,0,0,0,0,10],[37,0,0,0,0,10,0,0,0,0,18,0,0,0,0,16],[0,0,0,40,0,0,40,0,1,0,0,0,0,40,0,0],[1,0,0,0,0,40,0,0,0,0,0,1,0,0,1,0] >;

C52⋊SD16 in GAP, Magma, Sage, TeX

C_5^2\rtimes {\rm SD}_{16}
% in TeX

G:=Group("C5^2:SD16");
// GroupNames label

G:=SmallGroup(400,132);
// by ID

G=gap.SmallGroup(400,132);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,5,73,55,218,116,50,7204,1210,496,1157,299,2897]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=d^2=1,a*b=b*a,c*a*c^-1=a^3,d*a*d=b^3,c*b*c^-1=b^2,d*b*d=a^2,d*c*d=c^3>;
// generators/relations

Export

Subgroup lattice of C52⋊SD16 in TeX
Character table of C52⋊SD16 in TeX

׿
×
𝔽